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Abstract: Bitcoin, being the most widely used 

cryptocurrency, should have no security 

vulnerabilities. When users transfer Bitcoin, they 

must ‘sign off’ on the transaction using a private 

key generated by the elliptic curve digital 

signature algorithm (ECDSA). Calculating a 

user’s private key from their public key is known 

as the elliptic curve discrete logarithm problem 

(ECDLP). The only known method to solve this 

problem on classical computers is through brute-

force, which takes exponential time. However, 

quantum computers can run a modified version of 

Shor’s algorithm to solve the ECDLP in 

polynomial time, thus posing a threat to the 

security of ECDSA. In this paper I explain what 

makes the ECDLP intractable and run an 

experiment to estimate the time taken to solve the 

ECDLP on a classical computer. I then describe 

the modified version of Shor’s algorithm which 

can solve the ECDLP and compare it to brute 

forcing a solution on a classical computer. My 

research has shown that in the advent of quantum 

computers with sufficient qubits, the signature 

algorithm used in Bitcoin needs an update. 

Finally, I suggest a quantum-resistant alternative 

to ECDSA – Lamport Signatures. 
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1. Introduction 

1.1 What is Bitcoin? 

With a rise in online trading and mobile 

payments, digital currencies are becoming more 

relevant than ever before. The most used is 

Bitcoin, a decentralized, distributed, peer-to-peer 

cryptocurrency created in 2009 by an unknown 

programmer. They aren’t issued by any 

government nor managed by any bank. Many 

companies such as Dell and Reddit now accept 

Bitcoin as a form of payment for their goods and 

services [1]. There are several advantages to 

using Bitcoin, such as low transaction fees, the 

ability to be used in any country, and the lack of 

capital control. 

1.2 Explanation of the Question 

The code that Bitcoin runs on uses several 

algorithms and if just one of them has a security 

flaw, the whole system could be compromised. 

Bitcoin uses the Elliptic Curve Digital Signature 

Algorithm (ECDSA) to generate public keys for 

their users from a randomly selected private key. 

Proposed by Scott Vanstone, ECDSA is accepted 

by the International Standards Organization and 

is used by many programmers for digital key 

generation and verification. “The mathematical 

basis for the security of elliptic curve 

cryptosystems is the computational intractability 

of the elliptic curve discrete logarithm problem 

(ECDLP)” [2]. This essay examines the security 

of the ECDSA by exploring the possibility of 

solving the ECDLP with modern technology, 

and, due to the possible advent of quantum 

computing, aims to theoretically answer the more 

important question “How would quantum 

computing impact the security of Bitcoin by 

enhancing our ability to solve the elliptic curve 

discrete logarithm problem?” 
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2. Working of Bitcoin 

Bitcoin uses several common techniques to keep 

their users’ data secure and to enable transactions. 

Three of these techniques are hash functions, 

digital signatures, and the blockchain. 

2.1 Hash Functions 

Hash functions are mathematical functions that 

accept an input string of any size and produce a 

fixed-size output comprising seemingly random 

characters [3]. These functions are efficiently 

computable. If one character is changed in the 

input string, the output is completely changed. 

However, if a hash function is run multiple times 

on the same input, it will always produce the 

same output. For SHA-256, the output string is 

always 256 bits long. These two properties allow 

hash functions to serve as fixed-length summaries 

for a given input. Hash functions are quantum 

resistant [4]. 

2.2 Digital Signatures 

A digital signature is comparable to a handwritten 

signature on a piece of paper – it ensures the 

validity of a document. In Bitcoin, the digital 

signature changes depending on which document 

is being signed. This prevents the signature from 

being copied and pasted onto other documents.  

Every node on the Bitcoin network generates its 

own public and private key. The private key is 

kept secret and the public key is known by all 

nodes. The public key acts as an identity for a 

node and nodes can “speak” for the identity using 

the private key. Both the message on a document 

and the private key are used to create the 

signature, thus making it unique for each 

document. This prevents the signature from being 

forged onto other documents. To verify that the 

signature is valid, other nodes use the message, 

the public key, and the signature left by the node.  

The algorithm used to generate public keys from 

private keys in Bitcoin is the Elliptic Curve 

Digital Signature Algorithm (ECDSA). The 

private key is any random number that can be 

generated by an algorithm or chosen by the user. 

In Bitcoin, “each owner transfers the coin to the 

next by digitally signing a hash of the previous 

transaction and the public key of the next owner 

and adding these to the end of the coin. A payee 

can verify the signatures to verify the chain of 

ownership” [5]. This is done with the help of the 

blockchain. 

2.3 Blockchain 

“The block chain is a shared public ledger on 

which the entire Bitcoin network relies. All 

confirmed transactions are included in the block 

chain. This way, Bitcoin wallets can calculate 

their spendable balance and new transactions can 

be verified to be spending bitcoins that are 

actually owned by the spender” [6]. 

Every Bitcoin transaction is recorded in the 

blockchain, a copy of which is stored on millions 

of computers around the world [7]. The 

blockchain can be viewed by anyone on the 

network, thus allowing anyone to check the 

validity of transactions. This makes Bitcoin very 

secure because any tampering by a malicious user 

to the blockchain can be detected by other 

computers and the actions of this malicious user 

will be disregarded in other copies of the 

blockchain. 

3. Elliptic Curve Digital Signature 

Algorithm (ECDSA) 

Since the blockchain and hash functions aren’t 

vulnerable to quantum computing, the only 

possible weakness in Bitcoin is its digital 

signature algorithm. 
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3.1 Introduction to ECDSA 

The Elliptic Curve Digital Signature Algorithm is 

used to generate pairs of private and public keys 

and is based on a polynomial equation which can 

be plotted on a cartesian plane. The specific 

equation used by Bitcoin is named Secp256k1 

and has the following equation as defined by 

Federal Information Processing Standards.  

�� =  �� + 7 

However, the actual implementation of ECDSA 

in Bitcoin doesn’t resemble the graph above 

because it is defined over another field called 	
 

(defined for only prime numbers).  Plotting that 

graph would result in seemingly scattered points.  

The ECDSA generates and verifies keys 

according to certain parameters. These 

parameters (outlined in the appendix) are 

described for each curve in a document titled 

“Recommended Elliptic Curve Domain 

Parameters” written by Certicom Research. 

ECDSA randomly generates an integer private 

key from a selection with high entropy or allows 

a user to choose their own value. It then calculates 

a public key by multiplying the private key and 

the generation point – a constant value for that 

curve. Instead of normal multiplication, the 

algorithm employs invented elliptic curve 

mathematics to multiply the two values and 

calculate the public key. 

3.2 Invented Mathematical Operations 

for Elliptic Curves 

Elliptic curve arithmetic is complicated. 

However, it has an intuitively understandable 

geometric interpretation which is expressed 

below. 

3.2.1 Addition 

The slope of any two points on an elliptic curve 

intersect at a third point as well. Adding two 

points on an elliptic curve involves finding this 

third point and reflecting it in the x-axis.  Elliptic 

Curve addition employs modular arithmetic, 

meaning that if a calculated value crosses a set 

maximum value (officially called Pcurve in the 

Bitcoin code, outlined in the appendix), the value 

wraps around and starts from 0 again. This value 

is the largest possible value that a private key can 

take. 

The Secp256k1 curve plotted 

on a cartesian plane 

Elliptic Curve Addition 
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3.2.2 Point Doubling 

When trying to add a point to itself, there is no 

slope that can be found. Hence, the tangent of the 

curve at that point is taken and the second point 

on the graph that the tangent intersects is reflected 

in the x-axis to find the sum. This is known as 

point doubling and makes use of modular 

arithmetic as well. 

3.2.3 Multiplication 

When computing with elliptic curves, computers 

employ the ‘double and add’ algorithm to 

increase the efficiency of Elliptic Curve Point 

Multiplication. Point Multiplication involves 

repeatedly adding a point to itself using a 

combination of elliptic point addition and elliptic 

point doubling. For example, a point A would 

first be doubled to find 2A, and then 2A would be 

added to A to find 3A. 

 

 

3.3 Generating Public Keys 

The following piece of code written by the 

Congressional Research Institute represents a 

Python implementation of ECDSA 

Multiplication. It is used to generate a public key 

from a user’s private key. The original Bitcoin 

version is written in C and has many 

dependencies; hence it is easier to refer to this 

code. Multiplication is repeatedly adding a 

number to itself, so that is exactly what the 

algorithm is doing. 

In the code, the function EccMultiply accepts the 

generation point (GenPoint) and the users private 

key (ScalarHex). Before generating the public 

key, the function checks whether the Private Key 

is valid, then moves on the convert it into binary 

form. A loop is initiated to traverse each bit of the 

Private key.  

For each bit of the private key, the function 

doubles the generation point. However, if the 

bit’s value is 1, the algorithm adds it to the 

generation point as well. This is the efficient 

algorithm for elliptic curve multiplication known 

as ‘double and add’ which was mentioned earlier. 

The algorithm uses number theory which is 

outside the scope of this paper. It is important to 

note that this method is much more efficient than 

normal elliptic curve multiplication. 

The result of this function is the user’s public key 

which is known to all other nodes on the network 

when a transaction occurs. 

Elliptic Curve Point Doubling 

Elliptic Curve Multiplication in Python 
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3.4 Elliptic Curve Discrete Logarithm 

Problem 

Since the generation point and a user’s public key 

are known by all other nodes on the network, one 

might assume that it would be easy to generate a 

user’s private key by simply dividing the 

generation point by the public key. However, due 

to the complexity of the invented mathematics of 

elliptic curves and the extensive use of modular 

arithmetic, this isn’t the case. The ECDSA is a 

trapdoor function – it is easy to perform in one 

way, but reversing it is nearly impossible. Trying 

to reverse the function leads to the elliptic curve 

discrete logarithm problem (ECDLP).  

“ECDLP is the following problem: given two 

points � and � on an elliptic curve  defined over 

a field ��, where � is prime or a prime power, if 

� =  [�]� for some � ∈  	, determine �” [8]. 

Simply put, there is no easy way to reverse 

Elliptic Curve Multiplication, that is, to find the 

scalar value (private key) that the generation 

point was multiplied by to calculate the public 

key. Attempting to do so would involve trying 

every possible number that the private key could 

be - brute forcing - as there is no efficient way to 

reverse the elliptic multiplication function. This 

is very inconvenient because Bitcoin private keys 

are 256 bits long. 

4. Estimating the time taken to 

break the ECDSA 

Since the only way we can break elliptic curve 

cryptography is through brute force, this 

experiment aims at exploring how long it would 

take to find a Bitcoin private key from a given 

public key. 

4.1 Setting up the experiment 

Brute forcing a 256-bit private key is impossible; 

if it weren’t, we wouldn’t be using it for modern-

day cryptography. Hence, this experiment was 

conducted with private keys of smaller bit lengths 

and the data collected from this experiment was 

used to predict how long it would take to brute 

force a full 256-bit private key. 

The code obtained from the Congressional 

Research Institute provided efficient functions 

for elliptic curve addition, point doubling, and 

multiplication. The values from the standard 

domain parameters for Secp256k1 were altered to 

scale down the problem to bit sizes that modern 

computers can manage (4-bit, 8-bit, 12-bit, 16-

bit, 20-bit, and 24-bit) by changing the number of 

points in the curve, the length of the private key, 

and the coordinates of the generator point. The 

private key was set to half of its maximum 

possible value in order to find the average time it 

would take to brute force a key of that bit length. 

Next, a new Generator Point must be calculated. 

4.2 Finding the Generator Point 

Since the whole problem had to be scaled down, 

a new generator point must be found. The � and 

� value for this generator point had to be integers 

and finding these values manually would take a 

lot of time. The following segment of code was 

used to find the smallest possible generator point, 

allowing the same point to be used for all trials. 

The code used, and the results obtained, can be 

seen below. 

 

 

The calculated Generator Point 

Code used to calculate the Generator Point 



 Electronic copy available at: https://ssrn.com/abstract=3232101 

6 

 

The output shows that each coordinate of the 

smallest possible generator point has a 32-bit 

value (binary signed 2's complement). This value 

cannot be used because it is bigger than the bit 

size limit placed on the number of points on the 

curve.  Hence, a generator point with a decimal 

value must be used. This is not ideal but will still 

help predict the time it would take to break the 

ECDSA. 

4.3 Finding the private key through brute 

force 

The code written had complexity ��2�� for the 

worst case and ��2�/�� for the average case. 

Since a private key that would occur at the 

average case every time was chosen, the graph 

should resemble that of  � = 2�/�. The difference 

between the trendline of the data and this curve is 

caused by the processing power of the computer 

used. 

Changing the values of the elliptic curve domain 

parameters and running the experiment several 

times - to reduce random errors from 

experimentation - gave the following results. 

(Screenshots can be found in the appendix) 

Brute Forcing a Private Key 

Bit Length Time taken (s) 

4 0.000001 

8 0.004015 

12 0.105894 

16 3.547512 

20 129.584898 

24 3752.341034 

This data was then plotted to find a trendline. The 

equation � �  2�/� was also plotted to see how 

similar it is to the trendline. The trendline has an 

equation � � �2 � 10� !�� �.#$� where � is the 

bit length of the private key and � is the time 

taken in seconds. Substituting � � 256 into the 

equation gives the time it would take to break the 

ECDSA. This gives 34,731,122,970,038,200 

seconds, which is equal to 1,614,658,846 years.  

This number is huge, and we cannot begin to 

comprehend its magnitude. To put this number in 

perspective, if the first human on earth had 

today’s computing power and started trying to 

find a 256-bit private key using brute force, the 

probability of them finding the correct one by 

now would be less than 1%.  

Graph of Bit Length and Time Taken 

Data Points 

Trendline 

� �  2�/� 
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So, is the ECDSA in Bitcoin completely secure? 

Maybe not. Quantum computing could be the 

downfall of this algorithm. 

5. Quantum Computing 

5.1 Introduction to Quantum Computing 

Classical computers work with classical bits 

which can exist as either 0 or 1. “However, a 

single quantum bit, or qubit, has the luxury of an 

infinite choice of so-called superposition states. 

Nature allows it to have a part corresponding to 0 

and a part corresponding to 1 at the same time” 

[9]. This is known as superposition and these 

parts are the probabilities of being found in either 

state. One qubit can exist in a superposition of 

two states, two qubits can exist in four states, 

three qubits in eight states, and so on. As long as 

the qubit remains unobserved, it exists in a 

superposition and its value cannot be predicted. 

However, when its value is measured the 

superposition collapses into either 0 or 1, 

depending on the probability of being found in 

that state. “A collection of ' qubits is called a 

quantum register of size '” [10]. 

Quantum gates are similar to logic gates but are 

used on qubits. They manipulate a qubit’s 

probabilities and give another superposition as an 

output. When a quantum gate operates on a qubit, 

it operates on all possible superpositions 

simultaneously. This is known as quantum 

parallelism. Hence, if a quantum gate is applied 

on a two-qubit system, it effectively performs 22 

classical computations, on a three-qubit system it 

performs 23 classical computations, and so on. 

This number increases exponentially and is the 

reason for the effectiveness of quantum 

computers. However, when finding the output of 

a quantum computer, the state of a random qubit 

is measured. Hence, algorithms have been 

developed that increase the probability of 

measuring the state of the desired qubit.  

5.2 Shor’s Algorithm 

With the development of quantum computing, 

several algorithms have been written which take 

advantage of the properties of quantum elements.  

One such algorithm is Shor’s algorithm. 

Shor’s algorithm was originally written to solve 

the discrete logarithm problem but has been 

modified in “Quantum Resource Estimates for 

Computing Elliptic Curve Discrete Logarithms” 

to solve the ECDLP. The steps outlined in this 

paper are as follows 

1. Create two registers ( and ) of length ' +

1 qubits, where ' is the number of bits 

the elliptic curve is defined over.  

2. Apply a Hadamard transform to each 

qubit, which puts them in a superposition 

of all possible states where the 

probability of finding the qubit in any of 

these states is given by 

1

2�* 
 

We have the Generator Point + and the public 

key � of a given user and need to find the 

private key � of the user. We also know that 

� = +� (using elliptic curve multiplication) 

3. We create a third register with the value 

(+ + )�. We can then substitute � = +� 

to get (+ + )+� and factorize + from the 

equation to get +(( + )�).  

4. Next, we perform a Quantum Fourier 

Transform on this equation (a complex 

mathematical function out of the scope of 

this paper) and measure the state of the 

first two registers. Now the value of �, 

which is the user’s private key, can be 

computed from the measurements. 

This algorithm can calculate a user’s private key 

from their public key with complexity �('�) 

[11].  
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5.3 Shor’s Algorithm vs Classical Brute 

Force 

As compared to the complexity of the classical 

algorithm �(2�/��,  Shor’s algorithm is a lot 

faster for larger numbers, as shown in the graph 

below. We can see that � =  �� grows much 

slower than � =  2�/�. At � = 256, the 

complexity curve for classical computers is 

nowhere to be found. 

For smaller numbers, the classical algorithm is 

more efficient. However, once the bit length 

crosses 30, this is no longer the case. The table 

outlines the average number of steps required for 

each algorithm. 

 

 

Calculating the Private Key 

Bit 

Length 

(n) 

Shor's Algorithm 

��'�� 

Classical Algorithm 

��2�/�� 

4 64 4 

8 512 16 

12 1728 64 

16 4096 256 

20 8000 1024 

24 13824 4096 

28 21952 16384 

32 32768 65536 

36 46656 262144 

… … … 

64 262144 4294967296 

128 2097152 1.84467 × 10 # 

256 16777216 3.40282 × 10�, 

 

Classical Algorithm � =  2�/� 

Quantum Algorithm � =  �� 

Graph of Bit Length and Time Taken for Classical and 

Quantum Computers 
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It is evident from the data that Quantum 

Computers will reduce the security of Bitcoin 

tremendously because of their enhanced ability to 

solve the elliptic curve discrete logarithm 

problem with Shor’s Algorithm. Luckily, 

quantum computers capable of these 

computations haven’t been invented yet. 

6. Impact of Quantum Computing 

on Bitcoin 

6.1 Quantum Attacks 

A lot of security mechanisms have been placed in 

Bitcoin, such as the public blockchain which 

allows any user to verify the validity of 

transactions, or the quantum-resistant hash 

function SHA-256 used by Bitcoin to prevent any 

tampering of previous transactions. Despite this, 

if a user - Alice - could guess or calculate another 

user’s - Bob’s - private key, then Alice could 

spend all of Bob’s Bitcoins. All the transactions 

would seem legitimate since Alice would be 

signing all of them with Bob’s public key. This 

would be a digital form of identity theft and could 

be performed by cracking the ECDSA. While 

doing this is infeasible with modern computers, 

we are making progress in quantum computing 

and could eventually use Shor’s Algorithm to 

solve the ECDLP. 

As found by John Proos and Christof Zalka in 

their paper “Shor’s discrete logarithm quantum 

algorithm for elliptic curves”, the number of 

qubits required to solve the ECDLP is roughly 

6', or in Bitcoin’s case, roughly 1536 qubits. 

“IBM Q research has built and tested an 

operational 50 qubit prototype processor, a huge 

leap up from its previous record of 17 qubits” 

[12]. We are far behind the computing 

requirements for Shor’s algorithm, so the open 

source community that maintains Bitcoin’s code 

doesn’t have to worry for now. 

However, because of the many benefits that 

quantum computing would provide, IBM, 

Microsoft, and other companies are all racing to 

create quantum computers with many qubits. If 

these companies are successful, then Bitcoin will 

have to undergo a lot of change and switch the 

current ECSDA for another quantum resistant 

digital signature algorithm. 

6.2 A Possible Solution 

There are a few temporary solutions to this issue, 

such as using a Bitcoin public key only once. 

When Alice needs to transfer money to Bob, Bob 

gives out his Bitcoin address. To produce this 

address, Bob’s public key has been hashed 

several times over. The address, and hash 

functions in general, are quantum secure because 

there is no efficient algorithm (classical or 

quantum) which can find the input value of a hash 

function. Hence, even quantum computers will 

have to resort to brute force. 

When Bob wants to send money to someone else, 

however, then he must give out his public key 

which will be recorded into the blockchain. A 

malicious user on the network would then be able 

to calculate Bob’s private key from the public 

key, provided they have the resources. Therefore, 

when Bob uses the public key to send out money, 

he must immediately create a new Bitcoin 

account and transfer all his money there to keep 

his money safe.  

This is a common solution to this problem and is 

employed by a few people who suspect that their 

spending patterns might reveal too much about 

them, and hence switch their private and public 

keys every few transactions to protect their 

privacy and remain anonymous. This practice is 

even outlined in the ‘Protect your privacy’ 

section of the Bitcoin website. 
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7. Conclusion 

Bitcoin remains secure against modern-day 

computing. In the experiment conducted, we saw 

that it would take approximately 1.6 billion years 

to calculate a private key from a given public key. 

To improve the experiment, it could have been 

performed on multiple computers to reduce the 

effect of the specific processing power of the 

computer used. Additionally, the experiment 

could be run overnight for larger bit lengths to get 

more data. However, finding the Big O 

complexity of the algorithm meant that this was 

no longer required. 

Bitcoin remains vulnerable to quantum 

computers because of Shor’s Algorithm, but the 

advent of these computers seems too far away to 

worry about. Nevertheless, the development of 

quantum computing would also mean the 

development of quantum resistant cryptography. 

Perhaps in the future, Bitcoin could use Lamport 

Signatures, a digital signature algorithm which 

also makes use of hash functions, thus allowing 

Bitcoin’s digital signatures to be quantum 

resistant. 
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9. Appendix 

9.1 Domain Parameters for Secp256k1 (Certicom Research) 

As excerpted from Standards: 

The elliptic curve domain parameters over Fp associated with a Koblitz curve secp256k1 are specified by 

the sextuple T = (p,a,b,G,n,h) where the finite field Fp is defined by: 

• p = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F 

• = 2256 - 232 - 29 - 28 - 27 - 26 - 24 - 1 

The curve E: y2 = x3+ax+b over Fp is defined by: 

• a = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

• b = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000007 

The base point G in compressed form is: 
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• G = 02 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798 

and in uncompressed form is: 

• G = 04 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798 

483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8 

Finally the order n of G and the cofactor are: 

• n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141 

• h = 01 

 

9.2 The code used and results of the experiment 

The following code was adapted from what was provided by the Congressional Research Institute. This is 

the experiment performed for 4-bit key sizes. Other experiments were similar to this one. 

from datetime import datetime 

import sys 

import os 

Pcurve = 2**4 -1 # The proven prime 

N=0xF # Number of points in the field - It is the hexadecimal representation of Pcurve 

Acurve = 0; Bcurve = 7 # These two defines the elliptic curve. y^2 = x^3 + Acurve * x + 

Bcurve 

Gx = 0 

Gy = 2.646 

GPoint = (Gx,Gy) # This is our generator point. 

#Individual Transaction/Personal Information 

privKey = 0x7  

def modinv(a,n=Pcurve): #Extended Euclidean Algorithm/'division' in elliptic curves 

    lm, hm = 1,0 

    low, high = a%n,n 

    while low > 1: 

        ratio = int(high/low) 

        nm, new = hm-lm*ratio, high-low*ratio 

        lm, low, hm, high = nm, new, lm, low 

    return lm % n 
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def ECadd(a,b): # Not true addition, invented for EC. Could have been called anything. 

    LamAdd = ((b[1]-a[1]) * modinv(b[0]-a[0],Pcurve)) % Pcurve 

    x = (LamAdd*LamAdd-a[0]-b[0]) % Pcurve 

    y = (LamAdd*(a[0]-x)-a[1]) % Pcurve 

    return (x,y) 

def ECdouble(a): # This is called point doubling, also invented for EC. 

    Lam = ((3*a[0]*a[0]+Acurve) * modinv((2*a[1]),Pcurve)) % Pcurve 

    x = (Lam*Lam-2*a[0]) % Pcurve 

    y = (Lam*(a[0]-x)-a[1]) % Pcurve 

    return (x,y) 

def EccMultiply(GenPoint,ScalarHex): #Double & add. Not true multiplication 

    if ScalarHex == 0 or ScalarHex >= N: raise Exception("Invalid Scalar/Private Key") 

    ScalarBin = str(bin(ScalarHex))[2:] 

    Q=GenPoint 

    for i in range (1, len(ScalarBin)): # This is invented EC multiplication. 

        Q=ECdouble(Q); 

        if ScalarBin[i] == "1": 

            Q=ECadd(Q,GenPoint); 

    return (Q) 

print(); print( "  ******* Public Key Generation *********");  

print() 

PublicKey = EccMultiply(GPoint,privKey) 

print( "  the private key:");  

print( "  ", privKey); print() 

print( "  the calculated public key:");  

print( "  ",PublicKey); print() 

#The experiment starts here 

startTime = datetime.now() #Starting the timer 

for tempPrivateKey  in range (1,Pcurve): #Checking all possible values 

    tempPublicKey = EccMultiply(GPoint,tempPrivateKey) 
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    if tempPublicKey == PublicKey: 

        print() 

        print ("  ******* Brute Force Complete *********") 

        print() 

        print("  Public Key Input: ") 

        print("  ",tempPublicKey) 

        print() 

        print ("  Private Key Found: ") 

        print ("  ",tempPrivateKey) 

        print() 

        print ("  Total time taken = " , datetime.now() - startTime, " seconds") 

        break 

        exit() 

#End of code
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Below are screenshots of the results obtained from the experiment

. 

4-bit key 

8-bit key 

12-bit key 
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16-bit key 

20-bit key 

24-bit key 


