
 Electronic copy available at: https://ssrn.com/abstract=3232101

1

How would quantum computing impact the security of

Bitcoin by enhancing our ability to solve the elliptic curve

discrete logarithm problem?

Neeraj J. Samtani

Abstract: Bitcoin, being the most widely used

cryptocurrency, should have no security

vulnerabilities. When users transfer Bitcoin, they

must ‘sign off’ on the transaction using a private

key generated by the elliptic curve digital

signature algorithm (ECDSA). Calculating a

user’s private key from their public key is known

as the elliptic curve discrete logarithm problem

(ECDLP). The only known method to solve this

problem on classical computers is through brute-

force, which takes exponential time. However,

quantum computers can run a modified version of

Shor’s algorithm to solve the ECDLP in

polynomial time, thus posing a threat to the

security of ECDSA. In this paper I explain what

makes the ECDLP intractable and run an

experiment to estimate the time taken to solve the

ECDLP on a classical computer. I then describe

the modified version of Shor’s algorithm which

can solve the ECDLP and compare it to brute

forcing a solution on a classical computer. My

research has shown that in the advent of quantum

computers with sufficient qubits, the signature

algorithm used in Bitcoin needs an update.

Finally, I suggest a quantum-resistant alternative

to ECDSA – Lamport Signatures.

Key Words: Bitcoin, quantum computing,

elliptic curve discrete logarithm problem,

Safety/security in digital systems

1. Introduction

1.1 What is Bitcoin?

With a rise in online trading and mobile

payments, digital currencies are becoming more

relevant than ever before. The most used is

Bitcoin, a decentralized, distributed, peer-to-peer

cryptocurrency created in 2009 by an unknown

programmer. They aren’t issued by any

government nor managed by any bank. Many

companies such as Dell and Reddit now accept

Bitcoin as a form of payment for their goods and

services [1]. There are several advantages to

using Bitcoin, such as low transaction fees, the

ability to be used in any country, and the lack of

capital control.

1.2 Explanation of the Question

The code that Bitcoin runs on uses several

algorithms and if just one of them has a security

flaw, the whole system could be compromised.

Bitcoin uses the Elliptic Curve Digital Signature

Algorithm (ECDSA) to generate public keys for

their users from a randomly selected private key.

Proposed by Scott Vanstone, ECDSA is accepted

by the International Standards Organization and

is used by many programmers for digital key

generation and verification. “The mathematical

basis for the security of elliptic curve

cryptosystems is the computational intractability

of the elliptic curve discrete logarithm problem

(ECDLP)” [2]. This essay examines the security

of the ECDSA by exploring the possibility of

solving the ECDLP with modern technology,

and, due to the possible advent of quantum

computing, aims to theoretically answer the more

important question “How would quantum

computing impact the security of Bitcoin by

enhancing our ability to solve the elliptic curve

discrete logarithm problem?”

 Electronic copy available at: https://ssrn.com/abstract=3232101

2

2. Working of Bitcoin

Bitcoin uses several common techniques to keep

their users’ data secure and to enable transactions.

Three of these techniques are hash functions,

digital signatures, and the blockchain.

2.1 Hash Functions

Hash functions are mathematical functions that

accept an input string of any size and produce a

fixed-size output comprising seemingly random

characters [3]. These functions are efficiently

computable. If one character is changed in the

input string, the output is completely changed.

However, if a hash function is run multiple times

on the same input, it will always produce the

same output. For SHA-256, the output string is

always 256 bits long. These two properties allow

hash functions to serve as fixed-length summaries

for a given input. Hash functions are quantum

resistant [4].

2.2 Digital Signatures

A digital signature is comparable to a handwritten

signature on a piece of paper – it ensures the

validity of a document. In Bitcoin, the digital

signature changes depending on which document

is being signed. This prevents the signature from

being copied and pasted onto other documents.

Every node on the Bitcoin network generates its

own public and private key. The private key is

kept secret and the public key is known by all

nodes. The public key acts as an identity for a

node and nodes can “speak” for the identity using

the private key. Both the message on a document

and the private key are used to create the

signature, thus making it unique for each

document. This prevents the signature from being

forged onto other documents. To verify that the

signature is valid, other nodes use the message,

the public key, and the signature left by the node.

The algorithm used to generate public keys from

private keys in Bitcoin is the Elliptic Curve

Digital Signature Algorithm (ECDSA). The

private key is any random number that can be

generated by an algorithm or chosen by the user.

In Bitcoin, “each owner transfers the coin to the

next by digitally signing a hash of the previous

transaction and the public key of the next owner

and adding these to the end of the coin. A payee

can verify the signatures to verify the chain of

ownership” [5]. This is done with the help of the

blockchain.

2.3 Blockchain

“The block chain is a shared public ledger on

which the entire Bitcoin network relies. All

confirmed transactions are included in the block

chain. This way, Bitcoin wallets can calculate

their spendable balance and new transactions can

be verified to be spending bitcoins that are

actually owned by the spender” [6].

Every Bitcoin transaction is recorded in the

blockchain, a copy of which is stored on millions

of computers around the world [7]. The

blockchain can be viewed by anyone on the

network, thus allowing anyone to check the

validity of transactions. This makes Bitcoin very

secure because any tampering by a malicious user

to the blockchain can be detected by other

computers and the actions of this malicious user

will be disregarded in other copies of the

blockchain.

3. Elliptic Curve Digital Signature

Algorithm (ECDSA)

Since the blockchain and hash functions aren’t

vulnerable to quantum computing, the only

possible weakness in Bitcoin is its digital

signature algorithm.

 Electronic copy available at: https://ssrn.com/abstract=3232101

3

3.1 Introduction to ECDSA

The Elliptic Curve Digital Signature Algorithm is

used to generate pairs of private and public keys

and is based on a polynomial equation which can

be plotted on a cartesian plane. The specific

equation used by Bitcoin is named Secp256k1

and has the following equation as defined by

Federal Information Processing Standards.

�� = �� + 7

However, the actual implementation of ECDSA

in Bitcoin doesn’t resemble the graph above

because it is defined over another field called 	

(defined for only prime numbers). Plotting that

graph would result in seemingly scattered points.

The ECDSA generates and verifies keys

according to certain parameters. These

parameters (outlined in the appendix) are

described for each curve in a document titled

“Recommended Elliptic Curve Domain

Parameters” written by Certicom Research.

ECDSA randomly generates an integer private

key from a selection with high entropy or allows

a user to choose their own value. It then calculates

a public key by multiplying the private key and

the generation point – a constant value for that

curve. Instead of normal multiplication, the

algorithm employs invented elliptic curve

mathematics to multiply the two values and

calculate the public key.

3.2 Invented Mathematical Operations

for Elliptic Curves

Elliptic curve arithmetic is complicated.

However, it has an intuitively understandable

geometric interpretation which is expressed

below.

3.2.1 Addition

The slope of any two points on an elliptic curve

intersect at a third point as well. Adding two

points on an elliptic curve involves finding this

third point and reflecting it in the x-axis. Elliptic

Curve addition employs modular arithmetic,

meaning that if a calculated value crosses a set

maximum value (officially called Pcurve in the

Bitcoin code, outlined in the appendix), the value

wraps around and starts from 0 again. This value

is the largest possible value that a private key can

take.

The Secp256k1 curve plotted

on a cartesian plane

Elliptic Curve Addition

 Electronic copy available at: https://ssrn.com/abstract=3232101

4

3.2.2 Point Doubling

When trying to add a point to itself, there is no

slope that can be found. Hence, the tangent of the

curve at that point is taken and the second point

on the graph that the tangent intersects is reflected

in the x-axis to find the sum. This is known as

point doubling and makes use of modular

arithmetic as well.

3.2.3 Multiplication

When computing with elliptic curves, computers

employ the ‘double and add’ algorithm to

increase the efficiency of Elliptic Curve Point

Multiplication. Point Multiplication involves

repeatedly adding a point to itself using a

combination of elliptic point addition and elliptic

point doubling. For example, a point A would

first be doubled to find 2A, and then 2A would be

added to A to find 3A.

3.3 Generating Public Keys

The following piece of code written by the

Congressional Research Institute represents a

Python implementation of ECDSA

Multiplication. It is used to generate a public key

from a user’s private key. The original Bitcoin

version is written in C and has many

dependencies; hence it is easier to refer to this

code. Multiplication is repeatedly adding a

number to itself, so that is exactly what the

algorithm is doing.

In the code, the function EccMultiply accepts the

generation point (GenPoint) and the users private

key (ScalarHex). Before generating the public

key, the function checks whether the Private Key

is valid, then moves on the convert it into binary

form. A loop is initiated to traverse each bit of the

Private key.

For each bit of the private key, the function

doubles the generation point. However, if the

bit’s value is 1, the algorithm adds it to the

generation point as well. This is the efficient

algorithm for elliptic curve multiplication known

as ‘double and add’ which was mentioned earlier.

The algorithm uses number theory which is

outside the scope of this paper. It is important to

note that this method is much more efficient than

normal elliptic curve multiplication.

The result of this function is the user’s public key

which is known to all other nodes on the network

when a transaction occurs.

Elliptic Curve Point Doubling

Elliptic Curve Multiplication in Python

 Electronic copy available at: https://ssrn.com/abstract=3232101

5

3.4 Elliptic Curve Discrete Logarithm

Problem

Since the generation point and a user’s public key

are known by all other nodes on the network, one

might assume that it would be easy to generate a

user’s private key by simply dividing the

generation point by the public key. However, due

to the complexity of the invented mathematics of

elliptic curves and the extensive use of modular

arithmetic, this isn’t the case. The ECDSA is a

trapdoor function – it is easy to perform in one

way, but reversing it is nearly impossible. Trying

to reverse the function leads to the elliptic curve

discrete logarithm problem (ECDLP).

“ECDLP is the following problem: given two

points � and � on an elliptic curve defined over

a field ��, where � is prime or a prime power, if

� = [�]� for some � ∈ 	, determine �” [8].

Simply put, there is no easy way to reverse

Elliptic Curve Multiplication, that is, to find the

scalar value (private key) that the generation

point was multiplied by to calculate the public

key. Attempting to do so would involve trying

every possible number that the private key could

be - brute forcing - as there is no efficient way to

reverse the elliptic multiplication function. This

is very inconvenient because Bitcoin private keys

are 256 bits long.

4. Estimating the time taken to

break the ECDSA

Since the only way we can break elliptic curve

cryptography is through brute force, this

experiment aims at exploring how long it would

take to find a Bitcoin private key from a given

public key.

4.1 Setting up the experiment

Brute forcing a 256-bit private key is impossible;

if it weren’t, we wouldn’t be using it for modern-

day cryptography. Hence, this experiment was

conducted with private keys of smaller bit lengths

and the data collected from this experiment was

used to predict how long it would take to brute

force a full 256-bit private key.

The code obtained from the Congressional

Research Institute provided efficient functions

for elliptic curve addition, point doubling, and

multiplication. The values from the standard

domain parameters for Secp256k1 were altered to

scale down the problem to bit sizes that modern

computers can manage (4-bit, 8-bit, 12-bit, 16-

bit, 20-bit, and 24-bit) by changing the number of

points in the curve, the length of the private key,

and the coordinates of the generator point. The

private key was set to half of its maximum

possible value in order to find the average time it

would take to brute force a key of that bit length.

Next, a new Generator Point must be calculated.

4.2 Finding the Generator Point

Since the whole problem had to be scaled down,

a new generator point must be found. The � and

� value for this generator point had to be integers

and finding these values manually would take a

lot of time. The following segment of code was

used to find the smallest possible generator point,

allowing the same point to be used for all trials.

The code used, and the results obtained, can be

seen below.

The calculated Generator Point

Code used to calculate the Generator Point

 Electronic copy available at: https://ssrn.com/abstract=3232101

6

The output shows that each coordinate of the

smallest possible generator point has a 32-bit

value (binary signed 2's complement). This value

cannot be used because it is bigger than the bit

size limit placed on the number of points on the

curve. Hence, a generator point with a decimal

value must be used. This is not ideal but will still

help predict the time it would take to break the

ECDSA.

4.3 Finding the private key through brute

force

The code written had complexity ��2�� for the

worst case and ��2�/�� for the average case.

Since a private key that would occur at the

average case every time was chosen, the graph

should resemble that of � = 2�/�. The difference

between the trendline of the data and this curve is

caused by the processing power of the computer

used.

Changing the values of the elliptic curve domain

parameters and running the experiment several

times - to reduce random errors from

experimentation - gave the following results.

(Screenshots can be found in the appendix)

Brute Forcing a Private Key

Bit Length Time taken (s)

4 0.000001

8 0.004015

12 0.105894

16 3.547512

20 129.584898

24 3752.341034

This data was then plotted to find a trendline. The

equation � � 2�/� was also plotted to see how

similar it is to the trendline. The trendline has an

equation � � �2 � 10� !�� �.#$� where � is the

bit length of the private key and � is the time

taken in seconds. Substituting � � 256 into the

equation gives the time it would take to break the

ECDSA. This gives 34,731,122,970,038,200

seconds, which is equal to 1,614,658,846 years.

This number is huge, and we cannot begin to

comprehend its magnitude. To put this number in

perspective, if the first human on earth had

today’s computing power and started trying to

find a 256-bit private key using brute force, the

probability of them finding the correct one by

now would be less than 1%.

Graph of Bit Length and Time Taken

Data Points

Trendline

� � 2�/�

 Electronic copy available at: https://ssrn.com/abstract=3232101

7

So, is the ECDSA in Bitcoin completely secure?

Maybe not. Quantum computing could be the

downfall of this algorithm.

5. Quantum Computing

5.1 Introduction to Quantum Computing

Classical computers work with classical bits

which can exist as either 0 or 1. “However, a

single quantum bit, or qubit, has the luxury of an

infinite choice of so-called superposition states.

Nature allows it to have a part corresponding to 0

and a part corresponding to 1 at the same time”

[9]. This is known as superposition and these

parts are the probabilities of being found in either

state. One qubit can exist in a superposition of

two states, two qubits can exist in four states,

three qubits in eight states, and so on. As long as

the qubit remains unobserved, it exists in a

superposition and its value cannot be predicted.

However, when its value is measured the

superposition collapses into either 0 or 1,

depending on the probability of being found in

that state. “A collection of ' qubits is called a

quantum register of size '” [10].

Quantum gates are similar to logic gates but are

used on qubits. They manipulate a qubit’s

probabilities and give another superposition as an

output. When a quantum gate operates on a qubit,

it operates on all possible superpositions

simultaneously. This is known as quantum

parallelism. Hence, if a quantum gate is applied

on a two-qubit system, it effectively performs 22

classical computations, on a three-qubit system it

performs 23 classical computations, and so on.

This number increases exponentially and is the

reason for the effectiveness of quantum

computers. However, when finding the output of

a quantum computer, the state of a random qubit

is measured. Hence, algorithms have been

developed that increase the probability of

measuring the state of the desired qubit.

5.2 Shor’s Algorithm

With the development of quantum computing,

several algorithms have been written which take

advantage of the properties of quantum elements.

One such algorithm is Shor’s algorithm.

Shor’s algorithm was originally written to solve

the discrete logarithm problem but has been

modified in “Quantum Resource Estimates for

Computing Elliptic Curve Discrete Logarithms”

to solve the ECDLP. The steps outlined in this

paper are as follows

1. Create two registers (and) of length ' +

1 qubits, where ' is the number of bits

the elliptic curve is defined over.

2. Apply a Hadamard transform to each

qubit, which puts them in a superposition

of all possible states where the

probability of finding the qubit in any of

these states is given by

1

2�*

We have the Generator Point + and the public

key � of a given user and need to find the

private key � of the user. We also know that

� = +� (using elliptic curve multiplication)

3. We create a third register with the value

(+ +)�. We can then substitute � = +�

to get (+ +)+� and factorize + from the

equation to get +((+)�).

4. Next, we perform a Quantum Fourier

Transform on this equation (a complex

mathematical function out of the scope of

this paper) and measure the state of the

first two registers. Now the value of �,

which is the user’s private key, can be

computed from the measurements.

This algorithm can calculate a user’s private key

from their public key with complexity �('�)

[11].

 Electronic copy available at: https://ssrn.com/abstract=3232101

8

5.3 Shor’s Algorithm vs Classical Brute

Force

As compared to the complexity of the classical

algorithm �(2�/��, Shor’s algorithm is a lot

faster for larger numbers, as shown in the graph

below. We can see that � = �� grows much

slower than � = 2�/�. At � = 256, the

complexity curve for classical computers is

nowhere to be found.

For smaller numbers, the classical algorithm is

more efficient. However, once the bit length

crosses 30, this is no longer the case. The table

outlines the average number of steps required for

each algorithm.

Calculating the Private Key

Bit

Length

(n)

Shor's Algorithm

��'��

Classical Algorithm

��2�/��

4 64 4

8 512 16

12 1728 64

16 4096 256

20 8000 1024

24 13824 4096

28 21952 16384

32 32768 65536

36 46656 262144

… … …

64 262144 4294967296

128 2097152 1.84467 × 10 #

256 16777216 3.40282 × 10�,

Classical Algorithm � = 2�/�

Quantum Algorithm � = ��

Graph of Bit Length and Time Taken for Classical and

Quantum Computers

 Electronic copy available at: https://ssrn.com/abstract=3232101

9

It is evident from the data that Quantum

Computers will reduce the security of Bitcoin

tremendously because of their enhanced ability to

solve the elliptic curve discrete logarithm

problem with Shor’s Algorithm. Luckily,

quantum computers capable of these

computations haven’t been invented yet.

6. Impact of Quantum Computing

on Bitcoin

6.1 Quantum Attacks

A lot of security mechanisms have been placed in

Bitcoin, such as the public blockchain which

allows any user to verify the validity of

transactions, or the quantum-resistant hash

function SHA-256 used by Bitcoin to prevent any

tampering of previous transactions. Despite this,

if a user - Alice - could guess or calculate another

user’s - Bob’s - private key, then Alice could

spend all of Bob’s Bitcoins. All the transactions

would seem legitimate since Alice would be

signing all of them with Bob’s public key. This

would be a digital form of identity theft and could

be performed by cracking the ECDSA. While

doing this is infeasible with modern computers,

we are making progress in quantum computing

and could eventually use Shor’s Algorithm to

solve the ECDLP.

As found by John Proos and Christof Zalka in

their paper “Shor’s discrete logarithm quantum

algorithm for elliptic curves”, the number of

qubits required to solve the ECDLP is roughly

6', or in Bitcoin’s case, roughly 1536 qubits.

“IBM Q research has built and tested an

operational 50 qubit prototype processor, a huge

leap up from its previous record of 17 qubits”

[12]. We are far behind the computing

requirements for Shor’s algorithm, so the open

source community that maintains Bitcoin’s code

doesn’t have to worry for now.

However, because of the many benefits that

quantum computing would provide, IBM,

Microsoft, and other companies are all racing to

create quantum computers with many qubits. If

these companies are successful, then Bitcoin will

have to undergo a lot of change and switch the

current ECSDA for another quantum resistant

digital signature algorithm.

6.2 A Possible Solution

There are a few temporary solutions to this issue,

such as using a Bitcoin public key only once.

When Alice needs to transfer money to Bob, Bob

gives out his Bitcoin address. To produce this

address, Bob’s public key has been hashed

several times over. The address, and hash

functions in general, are quantum secure because

there is no efficient algorithm (classical or

quantum) which can find the input value of a hash

function. Hence, even quantum computers will

have to resort to brute force.

When Bob wants to send money to someone else,

however, then he must give out his public key

which will be recorded into the blockchain. A

malicious user on the network would then be able

to calculate Bob’s private key from the public

key, provided they have the resources. Therefore,

when Bob uses the public key to send out money,

he must immediately create a new Bitcoin

account and transfer all his money there to keep

his money safe.

This is a common solution to this problem and is

employed by a few people who suspect that their

spending patterns might reveal too much about

them, and hence switch their private and public

keys every few transactions to protect their

privacy and remain anonymous. This practice is

even outlined in the ‘Protect your privacy’

section of the Bitcoin website.

 Electronic copy available at: https://ssrn.com/abstract=3232101

10

7. Conclusion

Bitcoin remains secure against modern-day

computing. In the experiment conducted, we saw

that it would take approximately 1.6 billion years

to calculate a private key from a given public key.

To improve the experiment, it could have been

performed on multiple computers to reduce the

effect of the specific processing power of the

computer used. Additionally, the experiment

could be run overnight for larger bit lengths to get

more data. However, finding the Big O

complexity of the algorithm meant that this was

no longer required.

Bitcoin remains vulnerable to quantum

computers because of Shor’s Algorithm, but the

advent of these computers seems too far away to

worry about. Nevertheless, the development of

quantum computing would also mean the

development of quantum resistant cryptography.

Perhaps in the future, Bitcoin could use Lamport

Signatures, a digital signature algorithm which

also makes use of hash functions, thus allowing

Bitcoin’s digital signatures to be quantum

resistant.

8. Works Cited

[1] "Frequently Asked Questions," [Online]. Available: bitcoin.org/en/faq. [Accessed 2 January 2018].

[2] D. Johnson and A. Menezes, "The Elliptic Curve Digital Signature Algorithm (ECDSA)," 2000.

[3] A. Narayanan, J. Bonneau, E. Felten, A. Miller and S. Goldfeder, Bitcoin and Cryptocurrency

Technologies, Princeton University Press, 2016.

[4] M. Amy, O. D. Matteo, V. Gheorghiu, M. Mosca, A. Parent and J. Schanck, "Estimating the cost of

generic quantum pre-image attacks on SHA-2 and SHA-3," 2016.

[5] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," 2008.

[6] "How does Bitcoin work?," [Online]. Available: bitcoin.org/en/how-it-works. [Accessed 2 January

2018].

[7] R. Kestenbaum, "Why Bitcoin Is Important For Your Business," 14 March 2017. [Online]. Available:

www.forbes.com/sites/richardkestenbaum/2017/03/14/why-bitcoin-is-important-for-your-

business/#c86777b41b51. [Accessed 2 January 2018].

[8] M. Musson, "Attacking the Elliptic Curve Discrete Logarithm Problem," 2006.

[9] H.-K. Lo, T. Spiller and S. Popescu, Introduction to Quantum Computation and Information, World

Scientific Publishing Co. Re. Ltd., 1998.

 Electronic copy available at: https://ssrn.com/abstract=3232101

11

[10] A. Ekert, P. Hayden and H. Inamori, "Basic concepts in quantum computation," 2008.

[11] J. Proos and C. Zalka, "Shor’s discrete logarithm quantum algorithm for elliptic curves," Waterloo,

2008.

[12] S. Dent, "IBM's processor pushes quantum computing closer to 'supremacy'," 10 November 2017.

[Online]. Available: www.engadget.com/2017/11/10/ibm-50-qubit-quantum-computer/.

[Accessed 2 January 2018].

[13] "Doubling of Point P," 6 November 2013. [Online]. Available:

image.slidesharecdn.com/ellipticcurvecryptographyandzeroknowledgeproof-131105012551-

phpapp02/95/elliptic-curve-cryptography-and-zero-knowledge-proof-28-638.jpg?cb=1383614911.

[Accessed 2 January 2018].

[14] "Elliptic Curve Add," [Online]. Available: 3.bp.blogspot.com/-

kbpvaob3pPA/VEeyIPx3abI/AAAAAAAAAAk/3e2Z7Xl4Rms/s1600/elliptic-curve-add.png. [Accessed

2 January 2018].

[15] M. Hughes, "What Are Bitcoins Actually Used For Now in 2016?," 30 March 2016. [Online].

Available: www.makeuseof.com/tag/bitcoins-actually-used-now-2016/. [Accessed 2 January 2018].

[16] Wobine, "PrivateKeyToPublicKey.py," Congresional Research Institute, 13 March 2015. [Online].

Available: github.com/wobine/blackboard101/blob/master/EllipticCurvesPart4-

PrivateKeyToPublicKey.py. [Accessed 15 December 2017].

[17] Certicom Research, "Standards for Efficient Cryptography 2 (SEC 2)," 2010.

9. Appendix

9.1 Domain Parameters for Secp256k1 (Certicom Research)

As excerpted from Standards:

The elliptic curve domain parameters over Fp associated with a Koblitz curve secp256k1 are specified by

the sextuple T = (p,a,b,G,n,h) where the finite field Fp is defined by:

• p = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F

• = 2256 - 232 - 29 - 28 - 27 - 26 - 24 - 1

The curve E: y2 = x3+ax+b over Fp is defined by:

• a = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

• b = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000007

The base point G in compressed form is:

 Electronic copy available at: https://ssrn.com/abstract=3232101

12

• G = 02 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798

and in uncompressed form is:

• G = 04 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798

483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8

Finally the order n of G and the cofactor are:

• n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141

• h = 01

9.2 The code used and results of the experiment

The following code was adapted from what was provided by the Congressional Research Institute. This is

the experiment performed for 4-bit key sizes. Other experiments were similar to this one.

from datetime import datetime

import sys

import os

Pcurve = 2**4 -1 # The proven prime

N=0xF # Number of points in the field - It is the hexadecimal representation of Pcurve

Acurve = 0; Bcurve = 7 # These two defines the elliptic curve. y^2 = x^3 + Acurve * x +

Bcurve

Gx = 0

Gy = 2.646

GPoint = (Gx,Gy) # This is our generator point.

#Individual Transaction/Personal Information

privKey = 0x7

def modinv(a,n=Pcurve): #Extended Euclidean Algorithm/'division' in elliptic curves

 lm, hm = 1,0

 low, high = a%n,n

 while low > 1:

 ratio = int(high/low)

 nm, new = hm-lm*ratio, high-low*ratio

 lm, low, hm, high = nm, new, lm, low

 return lm % n

 Electronic copy available at: https://ssrn.com/abstract=3232101

13

def ECadd(a,b): # Not true addition, invented for EC. Could have been called anything.

 LamAdd = ((b[1]-a[1]) * modinv(b[0]-a[0],Pcurve)) % Pcurve

 x = (LamAdd*LamAdd-a[0]-b[0]) % Pcurve

 y = (LamAdd*(a[0]-x)-a[1]) % Pcurve

 return (x,y)

def ECdouble(a): # This is called point doubling, also invented for EC.

 Lam = ((3*a[0]*a[0]+Acurve) * modinv((2*a[1]),Pcurve)) % Pcurve

 x = (Lam*Lam-2*a[0]) % Pcurve

 y = (Lam*(a[0]-x)-a[1]) % Pcurve

 return (x,y)

def EccMultiply(GenPoint,ScalarHex): #Double & add. Not true multiplication

 if ScalarHex == 0 or ScalarHex >= N: raise Exception("Invalid Scalar/Private Key")

 ScalarBin = str(bin(ScalarHex))[2:]

 Q=GenPoint

 for i in range (1, len(ScalarBin)): # This is invented EC multiplication.

 Q=ECdouble(Q);

 if ScalarBin[i] == "1":

 Q=ECadd(Q,GenPoint);

 return (Q)

print(); print(" ******* Public Key Generation *********");

print()

PublicKey = EccMultiply(GPoint,privKey)

print(" the private key:");

print(" ", privKey); print()

print(" the calculated public key:");

print(" ",PublicKey); print()

#The experiment starts here

startTime = datetime.now() #Starting the timer

for tempPrivateKey in range (1,Pcurve): #Checking all possible values

 tempPublicKey = EccMultiply(GPoint,tempPrivateKey)

 Electronic copy available at: https://ssrn.com/abstract=3232101

14

 if tempPublicKey == PublicKey:

 print()

 print (" ******* Brute Force Complete *********")

 print()

 print(" Public Key Input: ")

 print(" ",tempPublicKey)

 print()

 print (" Private Key Found: ")

 print (" ",tempPrivateKey)

 print()

 print (" Total time taken = " , datetime.now() - startTime, " seconds")

 break

 exit()

#End of code

 Electronic copy available at: https://ssrn.com/abstract=3232101

15

Below are screenshots of the results obtained from the experiment

.

4-bit key

8-bit key

12-bit key

 Electronic copy available at: https://ssrn.com/abstract=3232101

16

16-bit key

20-bit key

24-bit key

